Consider the integral $\int \frac{\tan ^{3} 2 x}{\cos ^{4} 2 x} d x$. There are two basic approaches to this: (1)convert the cos function to a sec function and work with tan and sec or (2) convert tan to sin and \cos and work with sin and cos. Let's work them both and compare:
(1) $\int \frac{\tan ^{3} 2 x}{\cos ^{4} 2 x} d x=\int \tan ^{3} 2 x \sec ^{4} 2 x d x=\int \tan ^{3} 2 x\left(1+\tan ^{2} 2 x\right) \sec ^{2} 2 x d x$ $=\int\left(\tan ^{3} 2 x+\tan ^{5} 2 x\right) \sec ^{2} 2 x d x$
Substitute $u=\tan 2 x$ and $d u=2 \sec ^{2} 2 x d x$ and the integral becomes

$$
=\frac{1}{2} \int\left(u^{3}+u^{5}\right) d u=\frac{u^{4}}{8}+\frac{u^{6}}{12}+c=\frac{\tan ^{4} 2 x}{24}\left(3+2 \tan ^{2} 2 x\right)+c
$$

(2) $\int \frac{\tan ^{3} 2 x}{\cos ^{4} 2 x} d x=\int \frac{\sin ^{3} 2 x}{\cos ^{7} 2 x} d x=\int \frac{1-\cos ^{2} 2 x}{\cos ^{7} 2 x} \sin 2 x d x$ Substitute

$$
u=\cos 2 x \text { and } d u=-2 \sin 2 x d x \text { and you get }
$$

$-\frac{1}{2} \int \frac{1-u^{2}}{u^{7}} d u=-\frac{1}{2}\left(-\frac{1}{6 u^{6}}+\frac{1}{4 u^{4}}\right)+c=\frac{\sec ^{4} 2 x}{24}\left(2 \sec ^{2} 2 x-3\right)+c$
The TI92 (aka ' 89 with a bigger screen) produces a sin and cos version:

$12 \cdot(\cos (2 \cdot x))^{6} \quad 8 \cdot(\cos (2 \cdot x))^{4}$
$x_{y}=\frac{(\tan (2 \cdot x))^{4} \cdot\left(3+2 \cdot(\tan (2 \cdot x))^{2}\right)}{24}$

$33(x)=.2 / 8-1 / 24) /(\cos (2 * x))^{\wedge} 61$
Think
Finnic alta FINIS
Plotting all three versions yields a single overlapping image for each:

How about a rational function for a second integral? $\int \frac{5 x^{2}+4 x-5}{x^{3}-x} d x$
For this we been the partial fractions expansion of the integrand:
$\frac{5 x^{2}+4 x-5}{x^{3}-x}=\frac{5 x^{2}+4 x-5}{x(x-1)(x+1)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+1}$
Clearing denominators leads to
$5 x^{2}+4 x-5=A(x-1)(x+1)+B x(x+1)+C x(x-1)$
At this stage you could expand and equate coefficients of like powers of x on the left and the right, and sometimes this is needed (more irreducible quadratics involved, say) but here it's simpler to observe that the equation must be true for all x so it must be true for $x=0:-5=-A$; for $x=1: 4=2 B$; and for $x=-1:-4=2 C$ so $A=5, B=2$ and $C=-2$. Thus,

$$
\int \frac{5 x^{2}+4 x-5}{x^{3}-x} d x=\int \frac{5}{x}+\frac{2}{x-1}-\frac{2}{x+1} d x=5 \ln |x|+2 \ln |x-1|-2 \ln |x+1|=\ln \left|\frac{x^{5}(x-1)^{2}}{(x+1)^{2}}\right|
$$

Oh, professor? Plus a constant.
One more for the road? What if we tweak that denominator in the last problem and make the subtraction an addition? $\int \frac{5 x^{2}+4 x-5}{x^{3}+x} d x$ Then the partial fractions form involves an irreducible quadratic: $\frac{5 x^{2}+4 x-5}{x^{3}+x}=\frac{5 x^{2}+4 x-5}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}$
Clearing denominators leads to
$5 x^{2}+4 x-5=A\left(x^{2}+1\right)+(B x+C) x=(A+B) x^{2}+C x+A$
Equating coefficients shows immediately (with more complicated problems this can involve solving a system of linear equations) that $A=-5, B=10$ and $C=4$. So the integral comes out, as all these rational functions do, as a combo of logs and arctans:
$\int \frac{5 x^{2}+4 x-5}{x^{3}+x} d x=\int \frac{-5}{x}+\frac{10 x+4}{x^{2}+1} d x=-5 \ln |x|+5 \int \frac{2 x}{x^{2}+1} d x+4 \int \frac{1}{x^{2}+1} d x$ $=-5 \ln |x|+5 \ln \left|x^{2}+1\right|+4 \arctan x+c$

More complicated rational integrals require completing the square of the irreducible quadratic and this can get pretty tricky. Look at the screen shots below, for instance:

