
Consider the integral 
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x∫ .  There are two basic approaches to this: (1)convert 

the cos function to a sec function and work with tan and sec or (2) convert tan to sin and 
cos and work with sin and cos.  Let’s work them both and compare: 
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                          ( )3 5 2tan 2 tan 2 sec 2x x x dx= +∫  

Substitute 2tan 2   and 2sec 2u x du xdx= =  and the integral becomes 
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cos 2  and 2sin 2u x du x dx= = −  and you get 
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The TI92 (aka ’89 with a bigger screen) produces a sin and cos version: 

 
Plotting all three versions yields a single overlapping image for each: 

 



 
 

How about a rational function for a second integral? 
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For this we been the partial fractions expansion of the integrand: 
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Clearing denominators leads to 
( )( ) ( ) ( )25 4 5 1 1 1 1x x A x x Bx x Cx x+ − = − + + + + −  

At this stage you could expand and equate coefficients of like powers of x on the left and 
the right, and sometimes this is needed (more irreducible quadratics involved, say) but 
here it’s simpler to observe that the equation must be true for all x so it must be true for  
x = 0:  5 A− = − ; for x = 1: 4 2B= ; and for x = –1: 4 2C− =  so A = 5, B = 2 and C = –2.  
Thus, 
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− − + +∫ ∫  

Oh, professor?  Plus a constant. 
 
One more for the road?  What if we tweak that denominator in the last problem and make 

the subtraction an addition? 
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+∫   Then the partial fractions form involves an 

irreducible quadratic: 
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Clearing denominators leads to 
( ) ( ) ( )2 2 25 4 5 1x x A x Bx C x A B x Cx A+ − = + + + = + + +  

Equating coefficients shows immediately (with more complicated problems this can 
involve solving a system of linear equations) that A = –5, B = 10 and C = 4.  So the 
integral comes out, as all these rational functions do, as a combo of logs and arctans: 
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25ln 5ln 1 4arctanx x x c= − + + + +  

 
More complicated rational integrals require completing the square of the irreducible 
quadratic and this can get pretty tricky.  Look at the screen shots below, for instance: 

   


